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Abstract

After some general remarks on the efficiency of various Mbnté Carlo
algorithms for gauge theories, T discuss the calculation of the asymptotic
freedom scales of SU({2) and 3SU(3) gauge theories in the absence of quarks.
There are large numerical factors between: these scales when defined in
terms of the bare coupling of the lattice theory or when defined in terms

of the physical force between external sources.
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Abstract

After some general remsrks on the efficiency of various Monke
Carlo algorithms for gauge theories, I discuss the calculation of the
asymptotic freedom scales of SU({2) and SU(3) gauge theories im the
absence of quarks. There are large numerical factors between these
scales when defined in terms of the bare coupling of the lattice
theory or when defined in terms of the physical force between external

sources.



Recently Monte Carlo technmiques have proven to be a powerful non-
perturbative tool in the study of gquantized gauge theories.1’2’3 In this
talk I will first make some general remarks on Monte Carlo algorithms and .
then discuss calculation of the asymptotic freedom scales in‘SU(Z) and
SU(3) quarkless Yang-Mills theories.

The basic goal of a Monte Carlo procedure for a system of degrees
of freedom $; is to stochastically generate 2 sequence of configurations Cj

such that asymptotically any configuration C has probability demsity

-85(C)

P(C) ~ e o)

Here S{C) is the action and B the inverse coupling comnstant, Expectation
values of products of the ¢, are identified with the Green's functions of
the theory defined by a path integral, In statistical mechanics, S§ becomes
the Hamiltonian and 8 the inverse temperature.

In practice, useful Monte Carlo algorithms are based on a principle
of detailed balance. Let P(C + C') denote the probability that a2 given
configuration C in the sequence yields C' as the next configuration.
Suppose P satisfies

-85(0) —SS(C')_ (2)

P(C » CNe = P(C' + C)e

It is straightforward to define a norm between ensembies of configurations
such that application of the Monte Carlo procedure determined by P will
raduce the distance between any given ensemble and the equilibrium ensemble
satisfying Eq. (l).4 If the algorithm has eventual access to any configura-
tion, then ultimately Eq. (1) will be approached.

Eq. (2) is a rather general condition which leaves cpen considerable

leeway in prescription. For simplicity, usually oaly one degree of freedom ¢i



is varied at a time. 1In this case, the most intuitive algoritim is to
replace the given ¢i with a new value chosen randomly from all allowed
3 with weight proportional to the exponentiated action in Eq. 1.
Physically, ﬁhis correspongs to plaéing a heat bath at inverse temperature
g in contact with the variable in question. This process is repeated on
all the variables of the system and then the entire procedure is iterated.

In processing a given field variable, this heat bath method reduces
the above mentioned norm of the distance of an ensemble from quilibrium
by the greatest amount im comparison with all other algorithms working om
the same variable. This follows because repeated application of any algorithm
to a single varilable must eventuall? approach the heat bath. Unfortunately,
the generation of the appropriately weighted variable may be rather compli-
cated and time consuming. Consequently, considerably computationally
simpler algoritims satisfying Eq. (2) have been devised.& Nenetheless, for
continuous variables lying in simple manifolds, such as U(l) and su(2),
implementation of a heat bath algoritlm can result in considerable savings
of computer time.2 This is particularly the case in gauge theories, where
merely combining the interacting neighbor variables is a major part
of the computation. Except for the SU(3) calculations, my own Monte Carle
work on lattice gauge theory has been entirely with the heat bath technigue.
With SU{(3) I have used a variation of the Matropolis et al.s procedure.

T now turn to a discussion of the scales of asymptotic freedom. 1Im a
non-Abelian gauge theory the bare charge goes to zero with the logarithm of

the cutoff6
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Here 8o is the bare charge, Y5 and Y, are the first two coefficients in
the perturbative expansion of the Gell-Mznn Low function
dg.(a
a———-gi ) i Yogo + 1,80 + 0(g)) @
and a.is a minimum length imposed as an ultraviolet cutoff. -In the
lattice formulation a is the lattice spacing. The parameter AO is the

asymptotic freedom scale associated with whatever renormalization scheme is

being used. For SU(N) gauge groups the coefficients in Eq, {4) are

073 5 (5)
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These first two coefficients are independent of renormalization prescription.

The scale ﬂo is defined by Eq. (3), which can be rewritten

Ty
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My Monte Carlo estimates of these scales for the pures gauge theories are

A (1.3%.2) x 1072 & ST(2) , (8)

0

I

[
i

(5.01.5) x 107> /& SU(3) $)]

Here, Wilson's lattice regularization is used and K is the string tensien,
the coefficient of the linear potential between widely separated sources
in the fundamental representation of the gauge group. I will return later

to the calculation of these numbers.
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At first sight, these small numbers are rather surprising, coming
as they do from a theory with no free parameters, However the value of
A 0 is not independent of renormalization scheme. Since it is defined in
a weak coupling limit, one loop perturbative calculations can relate
different definitions of A,. Hasenfratz and Hasenfrat28 have recently done

0

a2 lengthy calculation to relate this lattice A_ to the more conventiounal scale

0
MOM . . .
A defined by a momentum space subtraction procedure in the Feynman gauge.
Their results are
e SU(2) (10)
A <835 g SU(3) (11)

0

These large coefficients partially cancel the small numbers in Egs. (8-9).

. ; . 9
1f we accept the string model commection with the Regge slope

K= —= (12)
27
and use o' = 1.0 (GeV)-Z, then we conclude for SUY)
A L 170250 wev (13)

Some caution wmay be necessary in the phenomenological interpretation of this
number because I have not included any effects of light quarks.

For the gauge group SU(é) I have performed a Monte Carlo check on the large
factor occurring in Eq. (10). T consider a physical renormalization scale
defined in terwms of the force between quarks. Rectangular Wilson loops with
one long dimension measure the energy of a quark-antiquark pair separated by

the shorter dimension



e—E(Ia)Ja

w(r,J) - J>5T >3 (14)

Here W(I,J) is a rectangular Wilson loop of size I by J in lattice units
and E(Ia) is the energy of two sources in the fundamental representation of

the gauge group and separated by a distance Ia. From this I obtain

- o1 W,
E(al) = - 2 log W(L,I-1) J >>% >3l (15

Unfortunately this energy includes the self emexrgy of the sources and there-
fore will diverge as the cutoff is removed.10 To remove this divergence,

work with the force

F avi(I-1) =

|

(E(at) - E(a(I-1) ))

w(r,J) w(r-1 ,J-1)
W(I,3-1) w(i-1,J)

1

1
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a

-15 (L, (16)
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where this defines the functiom x(I,J). I have arbitrarily selected the
geometric mean of I and (I-1) to define the physical distance. In the limit

of short distances, a simple perturbative calculaticn gives

38?\(1")
F(z) = s (17}
lemr
for SU(Z2). Here g;(r) is the charge renormalized at scale r. Indeed, the

force represents a natural gauge invariant definition of a renormalized

charge. Thus I define for J>3 >
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g2 (AT &) = 35 HT-Dx(1,9) (18)

In a Monte Carlo caleculation, practical lattice sizes do not allow
J>M >3, Indeed, I am forced to study Eq, (18) with I of only 2 or 3
and J up to 5; Asymptotic ffeédom, in relating g2 on different scales,
allows a check on this optimistic extension of Eq. (18). The remormalization
group predicts

BR(,/E a) = BR(/E a) _'—6% log3 + o(gl—) a9
. m

R
where 1 have defined the inverse renormalized coupling

A

BR(r) = . (20)

2
gp(r)
The factor of 4 is inserted to correspond to the nmormalizatiom used in

Ref. (2) of the inverse coupling

g= (21)
g0

which represents the inverse temperature of the equivalent statistical system.
In Figure (1) I plot Monte Carlo measurements on a 104 lattice of

BR(/gé) versus SR(VEE). Here the parameter J is 5 for the largest 8 and is

gradually reduced at stronger coupling where large loops have large statistical

errors. The plotted error bars are the standard deviation of the mean over

an ensemble of five configuratioms after attaining equilibrium. In the figure

I also plot the predicted asymptotic shift of Eq. (19).and the strong coupling

limit

8 (/6 a) = %BR(‘/Z_ a) + 0(8) (22)



For BR >1.5 the figure shows a linear relation between BR(Jf'a} and
BR(/E'a). The asymptotic freedom prediction of the intercept has the correct
sign, but is off slightly in magnitude. We interpret this as meaning

that using Eq. (18) for I of only 2 indutes an error in SR or order 0.2,

Note that Fig. (1) gives no indication of an equality of BR(/g.a)
with SR(/T a) at any finite, non-zeroc value of coupling. As we are com-
paring a physical quantity on two different length scales, such an equality
would be evidence for a renormalization group fixed point. The absence of
such a point is strong additional support for the absence of aphase
transition in SU(2) lattice gauge theory. Wilson's more detailed
real spate renormalization group calculations should strengthen this con-
clusion.

In Fig. (2), we plot BR(/E‘a) as measured above versus the inverse

bare charge 8. For B larger than 2.5 a good description is

=

BR{V’Q' a) = B(a) - L.6, (23>

The renormalization scale of gg vas defined in Eq. (7}. A renormalized

asymptotic freedom scale AR follows from a similar equation in terms of Bp

151

2
2y
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A, = lim L YAg z(r) exp { - )i (24)
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r -0 ZYOgR {r) ]

The difference between AR and AD is directly measured in Eq. (23)



A
3.(/7 a) = 8(a) » 1og( 0 )+ oz ™y (25)
3 YZ A
_ R
Thus, I conclude
iq 3,2
fp = — exp (1.6£.2)2—1 = (52£28) 1, (26)
V2 ' 11

The error is a subjective estimate. Note the remarkable agreement with the
Hasenfratz result in Eq. (10).

Finally I discuss how I obtained A as quoted in Egs, 8 and 9. 1If

0
T and J are large encugh that the arez law dominates Wilsom loops, then for

fixed goz(a)
¥(I,) +a’K (27

where XK is the string tension defined below Eg. (9}, In the strong coupling

regime, 8 < 2, ¥(I,J) is essentizlly independent of I and J and measures the

string tension. However as 8 is increased smaller values of 1 and J yield

a value of ¥ which begins to deviate from a2K and go over into a perturbative
inverse 8 behavior.

Thus I expect the true value of a2K to be given by the envelope of the
curves of X(I,J) as functions of —lz-. in figures (3} and (4) I show the
results of Monte Carlo measuremen%g of ¥x(I,1) for SU{2) and SU(3) lattice
gauge theory. TFor SU(2} I have used the heat bath method on a 104 Iattice
except in the strong coupling regions where an 8A lattice suffices. TFor
SU(3) I use a Metropolis type algoritim on a A4 lattice except at g52=1.ll and 1.80

where a 64 lattice was used. On these graphs I include curves of the strong

coupling limit
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2
log(3gy ) SU(3)

X(T,J)——> (28)
| 5
log(go ) suU(2)

Tn addition I plot bands corresponding to the asymptotic freedom prediction

.
¥ 2
2 K 2 0
a"K + =5 (¥.8n ) 1
40 AOZ 0°0 exp |~ ) (29)

with the AO values quoted in Egs. (8) and (9). The errors are subjective
astimates. The conclusions for SU(3), being based on a rather small lattice,
assume a similar structure to that seen with SU(Z); Note that the onset of
the strong coupling behavior sets in rather abruptly for SU(3) at gz A R

This agrees well with the series results in Ref, (11}).

The results in Figures (2) and (3) can-be combined to give the quark-
antiquark force in SU(2) gauge theory as a fumctiom of separation. Fig. (3)
shows the dimensicnless ratio F(r)/K as a functien of rv/X. The force is
determined from Eq. (17) using the Monte Carlo results for ng(ff-a). For
/% < .4 the radius is taken from Eq. (29) while for larger r I use Eq. 27
with the largest loops giving manageable fluctuations. For large v the figure
shows the constant force corresponding to a linear potential while at small
r the inverse square law appears with logarithmic corrections. The empirical

curve F/X = 1.0 + .lZ(rzK) is included in the figures to show that this

simple form, which was advocated in Ref. (12), adequately parametrizes the
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force for a wide range of r. The errors in this figure are statistical

only.
This research was performed under conmtract DE-AC02Z-76CHO00L6 with the

U. S. Department of Energy.
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Figure Captions

Comparing the renormalized inverse charge at two length scales,

The coupling from the potential versus the bare lattice coupling.
The quantities X(I,I} for SU(2) gauge theory as a function of l/gg .
The envelope of these curves describes the string temsion as a
function of bare coupling.

The quantities X(I,1) for SU(3) gauge theory.

The interquark force in SU(2) gauge theory.
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